Chemical Bonding Study Guide

General Rule of Thumb: metal + nonmetal =				
nonmetal + nonmetal(s) =				
Intro to Ionic Bonds!				
Knowing electron configurations is important because the number of $\underline{\text{valence electrons}}$ determines the chemical properties of an element.				
Valence Electrons:				
All elements in a particular group or family have the same number of valance electrons (and this number is equal to the group number of that element) Examples:				
Electron dot structures show the valence electrons as dots around the element's symbol:				
Li B Si N O F Ne				
Noble gas atoms are very stable; they have stable electron configurations. In forming compounds, atoms make adjustments to achieve the lowest possible (or most stable) energy.				
Octet rule:				
 Atoms of <u>METALS</u> obey this rule by losing electrons. Na: Na⁺: 				
 Atoms of <u>NONMETALS</u> obey this rule by gaining electrons. Cl: Cl⁻: 				
 Transition metals are exceptions to this rule. Example: silver (Aq) 				
By losing one electron, it acquires a relatively stable configuration with its 4d sublevel filled				

(pseudo noble-gas)

IONIC BONDS / COMPOUNDS

- Anions and cations have opposite charges; they attract one another by electrostatic forces (IONIC BONDS)
- Ionic compounds are electrically neutral groups of ions joined together by electrostatic forces. (also known as salts)
- ** the positive charges of the cations must equal the negative charges of the anions.
- ** use electron dot structures to predict the ratios in which different cations and anions will combine.

Examples:	Na	+	Cl
	Al	+	Br
	Κ	+	0
	Mg	+	Ν
	K	+	Р

Notes: Covalent Bonds

02

- <u>Covalent bonds</u>: occur between 2 nonmetals; electrons are shared not transferred, as in ionic bonds)
- The result of sharing electrons is that atoms attain a more stable electron configuration.
- Most covalent bonds involve:
 - 2 electrons (single covalent bond)
 - 4 electrons (double covalent bond
 - 6 electrons (triple covalent bond)

How to Draw Lewis Structures for MOLECULES

- Add up all valence electrons for EACH atom in the molecule
 (C = ALWAYS CENTRAL, H = ALWAYS ON OUTSIDE OF STRUCTURE)
- 2. Attach atoms with a single bond (skeleton drawing)
- 3. Subtract out 2 electrons for each single bond you drew (EACH BOND = 2 electrons)
- 4. Distribute remaining electrons (in pairs) around atoms to obtain octet rule (except H, HYDROGEN ONLY WANTS 2 ELECTRONS = 1 BOND to be like Helium noble gas)
- 5. If there's not enough electrons to satisfy the octet rule, make MULTIPLE BONDS (double, triple)

CO

• Lewis structures (electron dot structures) show the structure of molecules. (Bonds can

H ₂	HBr	CCI ₄

be shown with dots for electrons, or with dashes: 1 dash = 2 electrons)

 N_2